
Open Pedigree Standard Specification
Version 5, 14th July 2003

COPYRIGHT STATEMENT AND DISCLAIMER
This specification is Copyright (C) 2003 by the Open Pedigree Standards Group
(OPSG) and Jim Andrews, Ron de Jong and Colin Manning.

This specification is supplied "AS IS". The copyright holders disclaim all warranties,
expressed or implied, including, without limitation, the warranties of merchantability
and of fitness for any purpose. The copyright holders assume no liability for direct,
indirect, incidental, special, exemplary, or consequential damages, which may result
from the use of this specification, even if advised of the possibility of such damage.

Permission is hereby granted to use, copy, and distribute this specification for any
purpose, without fee, subject to the following restrictions:

1. The origin of this specification must not be misrepresented.
2. The specification may not be altered in any way.
3. This Copyright notice may not be removed or altered.

The copyright holders specifically permit, without fee, and encourage the use of this
specification to support the implementation of OPSX file format in commercial
products.

I General Information

I.1 Revision History
Version 1, 21st November 2001: Initial Draft.
Version 2, 3rd December 2001, First Revision:

- renamed SourceIn, DateIn, SourceUp and DateUp to be “InputSource”, “InputDate,
“UpdateSource”, and “UpdateDate” and also moved these fields to be fields common to any
record type. (not specific to animals).
- subfield separator changed to be not

- added section about multiple field values and added columns to the field tables to indicate
which fields are anticipated may have multiple values for a single record
- renamed the binary field type to be ‘binary’ rather than ‘hex’
- defined a mechanism by which binary data fields may be encoded in ways other than hex;
this is really intended as a placeholder for defining the attribute that is to be used in future if
non-hex encoded binary data is added to the spec; this can also affect the encoding of other
binary-style fields such as JPEG images. Note: this does not give us any more work in
implementing v1 of the spec!
- put back the overall file structure to be what Ron initially proposed
- changed the currency field type as per Ron’s suggestion. Now much simpler.
- addition of maxsz attribute for text fields
- addition of encryption attribute

Version 3, 8th March 2002, Second Revision:
- File Naming Convention: MIME type added
- <table> tag within <data> renamed as <t>
- ‘id’ attribute renamed as ‘tid’ (<t> and <table> tags) or ‘fid’ (<f> and <field> tags)
- added text to state which attributes are required and which are optional

- ‘alfirin’ source id defined
- character set now defined as iso-8859-15
- datetimes: now iso 8601 compliant using UTC time
- explicit note that whitespace is ignored in binary data
- MIME types now used to identify graphics file formats
- Support for field data not being inline, but specified indirectly by use of the XLink

recommendation
- ‘type’ attribute may optionally be used in <f> tag, e.g. when used in image fields with inlined

image data.
Version 4, 10th July 2003:

- Some additional animal types added to ANIMALID, section 1.4
- Section 1.4, OPSVERSION incremented to 2 due to incompatible changes from earlier spec
- Section I.5.A, Multi-Line Data - changed the handling of raw newline characters, now they

are treated as whitespace.
- Section I.5.B removed – Sub-Field Separators
- New Section I.12 added – Personal Names and Addresses. Describes the handling of name

and address fields in split and combined format fields.
- New Section I.13 added – Field Grouping.
- Section II.2 and II.2 – new fields added resulting from the addition split name/addresses
- New Section I.2.A – Terminology
- Section I.6 – Non-Inline Data – note added making it clear that full support for inline binary

image data is optional.
- Sections II.1, II.2, II.3 – Standard Fields – All fields renumbered, new fields introduced due

to new split/combined names+addresses, and removal of sub-field separators.
Version 5, 15th July 2003:

- Addition of Copyright Statement
- Section 1.7 – private tags and attributes now start with underscore ‘_’ not ‘x’
- Section 1.9A – removal of maxsz attribute and references to sub-field separators
- Section 1.9C – underscore (_) now used instead of Z to separate date from time
- Section 1.9 – sections relating to image files now contain explicit statement saying that

OPSX compliant apps are not required to implement any specific image format, though they
must be able to parse them within OPSX files.

- Section 1.4 – addition of SHORTCODE
- Section II – removal of ‘short’ versions of some fields, replaced with permissable use of

‘short’ attribute on the equivalent ‘full’ fields

I.2 Overview
This document is the definition of the Open Pedigree Standard (OPS) – an open format
for the interchange of animal pedigree information. The standard is based on XML.
Anybody is free to use this specification for whatever purpose they like.

It is recommended that any product, such as a pedigree software package, should both
read and write files of this format, so as to maximize the benefit to users of the
standard.

This standard was developed by a group of pedigree software suppliers to answer the
need for a pedigree interchange format independent of any one supplier and that is
sufficiently rich to enable compliant programs to exchange data easily.

The standard is intended to be neutral of any specific operating system platform, e.g
Windows.

I.2.A Terminology
This section lists some terms used in this document:

A writer is any application that generates an OPSX file.

A reader is any application that processes OPSX files.

I.3 File Naming Convention
OPSX files are XML (eXtensible Markup Language) files and as such will have the
extension .xml.

OPSX files have MIME type "application/x-pedigree+xml"

I.4 File Structure
An OPSX file is an XML file with the following structure:

<?xml version="1.0"?>
<opsg version=’OPSVERSION’ source=’SOURCEID’ sourcever=’string’ animal=’ANIMALID’
description=’DESCRIPTION’>
<definition>
 <table name='TABLENAME' tid='TABLEID'>
 <field name=’FIELDNAME’ fid='FIELDID' type=’TYPEID’/>
 .
 . repeat for other field definitions for this table
 .
 </table>
.. definitions for other data structures (other than tables) could be added here
</definition>
<data>
 <t name='TABLENAME' tid='TABLEID'>
 <record>
 <f fid='FIELDID' type=’TYPEID’ short=’SHORTCODE’>FIELDDATA</f>
 .
 . repeat for other fields within this record
 .
 </record>
 .
 . repeat for other records in this table
 .
 </t>
..
.. repeat for other tables
..
 data for other data structures (other than tables) could be added here
</data>
.
</opsg>

where:
OPSVERSION This is a required attribute. Represents the OPS standard

version to which the file complies. Initially this is fixed at
2. It will be incremented as newer versions of the
standard are defined.

SOURCEID This is a required attribute. Is a string defining the name
of the generating program. Anyone may apply to the
OPSG to have a SOURCEID allocated to them. A
SOURCEID consists of alphabetic and numeric
characters only. Standard SOURCEID’s will never start
with the character ‘_’, which is reserved for use by
applications which have not applied to OPSG for their
own SOURCEID to be allocated. (i.e _ prefaces a
private use of the standard)

The following standard sourceid’s are defined:
In alphabetical order:
source=’breedersassistant’
source=’breedmate’
source=’k9ped’
source=’pedigrees2000’
source=’alfirin’

SOURCEVER Is an optional attribute. The format of the attribute value
is undefined. The purpose of the attribute is to identify
the version of the generating (source) program. When a
program processes an OPSX file, the value of the
SOURCEVER attribute should only be
programmatically interpreted when the program
processing the file is the same product as generated the
file. E.g it might use this attribute to identify which
private field types to expect etc.

ANIMALID This is a required attribute. It is a string defining the kind
of animal. Anyone may apply to the OPSG to have an
ANIMALID allocated. An ANIMALID consists of
alphabetic and numeric characters only. Standard
ANIMALID’s will never start with the character ‘_’,
which is reserved for private use by applications.

The following standard ANIMALID's are defined:
animal=’bird’
animal=’cat’
animal=’cavy’
animal=’dog’
animal=’hamster’
animal=’horse’
animal=’rabbit’
animal=’rat’
animal=’sheep’
animal=’goat’
animal=’cow’
animal=’pig’
animal=’undefined’

DESCRIPTION This is an optional attribute. It may be used to describe
the data within the file. Typically this might be presented
to the user of a program that is importing the file. E.g.
‘Johns latest cat data’ or 'That data you asked for' or
'Persians, 2000-2001' etc

TABLENAME This is an optional attribute. Is a placeholder for a
description of the purpose of the table. It serves no other
purpose except to assist a human in browsing through an
OPSX file, or to present in a user interface by a program
that is processing the file. OPS compliant programs use
the TABLEID to identify the purpose of a table.

TABLEID This is a required attribute. Is an integer number that
identifies the purpose of the table. This document
defines standard values for some TABLEID’s. Such
standard values are always positive integers, and the use
of positive integers for TABLEID’s is reserved by the
standard. An OPS compliant program may include
private tables in an OPSX file by assigning them
negative values.

FIELDNAME & FIELDID Work on similar lines to TABLENAME and TABLEID
except that they work at the field level. Again, positive
FIELDID’s are reserved for definition by this standard.
The only exception to this is within a table that itself is
private (ie negative TABLEID).
FIELDID is a required attribute.
FIELDNAME is an optional attribute.l

TYPEID This is a required attribute when used in a <field> tag
(i.e., within a field definition). It is optional when used in
a <f> tag (i.e., field data within a record).
Indicates the ‘content’ of the data for a field. Standard
field data types are defined in I.8. A program may use
non-standard TYPEID’s so long as they start with the
letter ‘_’. It should be noted that for many of the
standard fields, the TYPEID is defined implicitly in this
document. And therefore the type= attribute need not be
specified within every OPSX file. However, they can
(and perhaps should) be included within field definitions
for completeness.

FIELDDATA Defines the field data for a field.

SHORTCODE May be set to ‘1’ to indicate a short form of a field.
Used with certain fields that may be presented in both
‘normal’ (long) form and a short or abbreviated form.

Fields that support this attribute are indicated in section
II.

I.5 Character Set
An OPSX file is encoded using iso 8859-15

Notes
1. To include the tab character as actual field data, the 	 HTML character
entity must be used.
2. OPS does not presently support far eastern languages.

I.5.A Multi-Line Data
New lines within the data of a field are treated as if they were a single space. Thus:

<f fid=’1’>Hello There</f>

has exactly the same meaning as
<f fid=’1’>Hello
There</f>

When field data represents true multi-line text, the HTML character entity for carriage
return should be used whenever a 'real' new line is to be started within the data. i.e
 Thus:

<f fid=’205’>1 High StreetMytownAnystate 12345US</f>

represents multi-line data for a ‘combined’ address like this:
1 High Street
Mytown
Anystate 12345
US

I.6 Non-Inline Data
Field data is normally supplied inline within a <f> tag. E.g.

<f fid='802' type='image/bmp'>8762348768…</f>

where the data in this case is a binary encoded.

However, it may be supplied remotely by way use of attributes conforming to the
XLink standard. E.g.

<f fid='802' xlink:href=http://foo.bar.com/images/dog.jpg type='image/bmp' />

NOTE: It is optional whether a reader fully supports inline binary data for images. An
application may opt to only support images given as filenames (i.e., with
type=’string’). However, all readers must be able to parse fields with inline binary data,
even if they just ignore it.

I.7 Non-Standard Attributes and Non-Standard Tags
Any application of OPSX format is free to use its own non-standard (private) tags and
attributes. All such tags and attributes must start with the letter ‘_’.

e.g. a non-standard attribute used within a field definition:
<field name=’Name’ fid=’1’ xcolour=’FF0000’>

e.g. a non-standard tag:
<xmyprivatedata>blah blah blah</myprivatedata>

I.8 Multiple Field Values
Certain fields can have multiple values for a single record. E.g. with an animal record,
you can have multiple breeders, or multiple pre-titles, or multiple registration numbers.

Such fields are permitted to be given multiple times within a single record, once for
each data value. E.g.

<f fid=’520’>Champion</f>
<f fid=’520’>Premier</f>

The sections below indicate those fields where multiple values are anticipated.

Where multiple instances of the same field id are given within a single record, AND if
it is meaningful for the values to be ordered in some kind of ‘priority’, this ordering is
implied by the ordering of the fields within the record. E.g if there is a ‘primary’ and a
‘secondary’ registration number (that is less important) then one would expect the
exporting program to write the field containing the primary registration number first.

Note also that grouping is often used in conjunction with multi-valued fields, so as to
present multiple groups of associated fields. E.g. multiple registration information
could be presented like this:

<g>
 <f fid=’530’>CS987987</f>
 <f fid=’531’>GCCF</f>
 <f fid=’532’>20020830</f>
 <f fid=’533’>UK</f>
</g>
<g>
 <f fid=’530’>SBT 987987</f>
 <f fid=’531’>TICA</f>
 <f fid=’533’>US</f>
</g>

etc

I.9 Standard Field Types

I.9.A Strings
type='string'

A string that is otherwise uninterpreted. This is the default field type for all standard
fields unless otherwise specified. Multi-line text can be included by way of the HTML
character entity for carriage return (see I.5.A).

I.9.B Dates
type='date'

Dates are encoded as yyyymmdd e.g
20010329

I.9.C Date Times
type='datetime'

Datetimes are encoded as yyyymmdd_hhmmss e.g
20010329_235959

would be 23:59.58 on 29th March 2001. Datetimes should be given in Universal
Coordinated Time (UTC) (GMT).

I.9.D Boolean or Logical Values
type='bool'

Boolean values encoded as:
'0': false
'1': true

I.9.E Integer Numbers
type='int'

An integer number. Negative numbers allowed.

I.9.F Floating Point Numbers
type='float'

An floating point number in printf '%g' format.

I.9.G Binary Data
type='binary' [format=’hex’]

Binary data. The ‘format’ attribute is an optional attribute that states the format in
which the data is present. At present, only one format is defined, which is ‘hex’ in
which the bytes are presented in hex code in the usual way. Irrespective of the value of
the ‘format’ attribute, the actual data for the field will be encoded using only printable
7bit ASCII characters (codes 33 though 126), excluding all characters that have special
meaning in XML (like ‘<’). Whitespace characters are ignored. If the ‘format’ attribute
is not explicitly given, ‘hex’ format is assumed. E.g. with hex format:

'0134F7e6'

would represent the following four bytes of data:
0x01
0x34
0xF7
0xe6'

Upper/lower case in hex encoding is immaterial.

Private formats may be used by an application by using a value for the format attribute
that starts with ‘_’, e.g:

<field fid=… type=’binary’ format=’_myformat’>

Note:
The purpose of the ‘format’ attribute is to define the means by which additional
formats for binary data will be presented within an OPSX file. Upon reading an
OPSX file, if an importing program finds there is a format attribute that it does not
understand, it can at least handle the situation gracefully.

I.9.H JPEG Image Files
type='image/jpeg' [format=’hex']

A JPEG image. The format attribute is optional, but if present works in exactly the
same way as for binary data (see I.9.G). When the format attribute is not defined for a
field of this type, the field data is encoded in hex.
The standard allows for the image data to be supplied inline, as above, but it can also
be supplied indirectly by using xlink:href attributes (see above).
There is no requirement that OPSX compliant programs implement JPEG format
images, but they must support the parsing of such images within an OPSX file.

I.9.I Windows Bitmap Image Files
type='image/bmp' [format=’hex']

A BMP image, encoded in hex. The format attribute is optional, but if present works in
exactly the same way as for binary data (see I.9.G). When the format attribute is not
defined for a field of this type, the field data is encoded in hex.
The standard allows for the image data to be supplied inline, as above, but it can also
be supplied indirectly by using xlink:href attributes (see above).
There is no requirement that OPSX compliant programs implement Windows bitmap
format images, but they must support the parsing of such images within an OPSX file.

I.9.J GIF Format
type='image/gif' [format=’hex']

A GIF image, encoded in hex. The format attribute is optional, but if present works in
exactly the same way as for binary data (see I.9.G). When the format attribute is not
defined for a field of this type, the field data is encoded in hex.
The standard allows for the image data to be supplied inline, as above, but it can also
be supplied indirectly by using xlink:href attributes (see above).
There is no requirement that OPSX compliant programs implement GIF format
images, but they must support the parsing of such images within an OPSX file.

I.9.K Windows Metafile Format
type='application/x-msmetafile' [format=’hex']

A WMF image, encoded in hex. The format attribute is optional, but if present works
in exactly the same way as for binary data (see I.9.G). When the format attribute is not
defined for a field of this type, the field data is encoded in hex.
The standard allows for the image data to be supplied inline, as above, but it can also
be supplied indirectly by using xlink:href attributes (see above).
There is no requirement that OPSX compliant programs implement Windows metafile
format images, but they must support the parsing of such images within an OPSX file.

I.9.L Windows Enhanced Metafile Format
type='application/x-msenhancedmetafile' [format=’hex']

A EMF image, encoded in hex. The format attribute is optional, but if present works in
exactly the same way as for binary data (see I.9.G). When the format attribute is not
defined for a field of this type, the field data is encoded in hex.
The standard allows for the image data to be supplied inline, as above, but it can also
be supplied indirectly by using xlink:href attributes (see above).

There is no requirement that OPSX compliant programs implement Windows extended
metafile format images, but they must support the parsing of such images within an
OPSX file.

NOTE: there doesn’t appear to be a formally defined MIME type for MS enhanced
metafile. If anyone knows of any ‘official’ MIME type for this, please let us know!

I.9.M Amounts of Money
type='currency' [format='…’]

Used for amounts of money. In a field definition for a field of type 'currency', the
format attribute is a string specifying the layout. It may contain the placeholders %a
and %b which represent the integral and fractional parts respectively. The integral part
may be negative. If the format attribute is not given it is assumed to be ‘$%a.%b’.

E.g 1
If:

format=’$%a.%b’

Then examples of valid amounts are:
$1.23
$100000.00
$-100.00

Examples of invalid amounts with this format include:
$1 (no fractional part)
1.23 (no $)

E.g 2
If:

format=’%a,%b DM’

Then examples of valid amounts are:
1,23 DM
100000,00 DM
-100,00 DM

Notes
1. Spaces may be included within currency values but are ignored.
2. The purpose of the ‘format’ attribute is simply to define a way to present the values
of amounts of money in a way that can be programmatically understood by an OPS
compliant program if it so wishes. There is no requirement that a program actually
uses these features. E.g. a product might use simple text fields to store currency
values.

I.10 Indeterminate Field Values
If the value of a standard field is not known for a given record, this is represented in an
OPSX file by that field being entirely missing within the record. Note the subtle
difference, in the case of a string field, between a field being missing, and the field
being present but set to the empty string. e.g.

<f fid='1'></f>

means that the field with fid 1 is set to the empty string; whereas if the field is simply
missing within the xml data, then the value of that field is undefined. They are not the
same.

When a field is undefined, a reader may choose an appropriate default for the field
(which in many cases would actually be the empty string).

I.11 Encryption
The following attribute may be used in any <field> tag within the <definition> section
to indicate that the data for that field will be presented in encrypted format within the
file.

encryption=’…’

where the value of the attribute specifies the encryption method used.

At present, one value is defined for this attribute:
encryption=’none’

and this simply states that no encryption is used. Any value that starts with the letter
‘_’ is an encryption format private to the program authoring the OPSX file containing
it.

Values other than ‘none’ but excluding private values starting ‘_’ are reserved until
further defined by a later revision of this standard.

I.12 Personal Names and Addresses
The standard supports 2 different methods of representing personal names and
addresses, split field and combined fields. Readers must support both forms. Writers
may support either or both forms.

I.12.A Personal Names
A personal name in split form is given as three fields: title, forename (first name) and
surname (last name). E.g.

<f fid=’202’>Mr</f>
<f fid=’203’>John</f>
<f fid=’204’>Smith</f>

A personal name in combined form is simply a single field containing the name. e.g.
<f fid=’201’>Mr John Smith</f>

I.12.B Addresses
An address in split form is given as various fields: Street1, Street2, Street3, City,
State/Region, Country, Postcode/Zipcode. E.g.

<f fid=’220’>The Meadows</f>
<f fid=’221’>17, Main Street</f>
<f fid=’224’>Mytown</f>
<f fid=’225’>Anystate</f>
<f fid=’211’>UNITED STATES</f>
<f fid=’226’>90870</f>

An address in combined form is simply a single string field containing the address. e.g.
<f fid=’217’>The Meadows17, Main
StreetMytownAnystateUNITED STATES90870</f>

I.12.C Mandatory Requirement
Writers may output personal names in split format, or combined format, or both
formats. Likewise writers may output addresses in split format, or combined format, or
both formats. Generation of split format fields for personal names does not imply that
addresses will also be output in split format and vice versa – e.g. personal names may
be output in split format but addresses might be output in combined format.

Readers must handle both split and combined forms of these fields. This is necessary
for interoperability because writers may generate either form.

I.12.D Personal Names in Animal Table
Fields containing personal names are used in the animal table e.g. for the name(s) of
breeder(s). There are 4 fields defined for each context in which a personal name can
appear in the animal table: 1 field for the combined form of the name, and 3 further
fields for the split form.

E.g. if “Mr John Smith” is a breeder of a dog called Bonzo, this could be represented
within that dog’s record as the split form:

<record>

<f fid=’110’>Champion</f>
<f fid=’101’>Bonzo</f>
<f fid=’199’>Mr</f>
<f fid=’218’>John</f>
<f fid=’219’>Smith</f>
...

OR the combined form:
<record>
<f fid=’110’>Champion</f>
<f fid=’101’>Bonzo</f>
<f fid=’132’>Mr John Smith</f>
...

OR both forms:
<record>
<f fid=’110’>Champion</f>
<f fid=’101’>Bonzo</f>
<f fid=’132’>Mr John Smith</f>
<f fid=’199’>Mr</f>
<f fid=’218’>John</f>
<f fid=’219’>Smith</f>
...

I.13 Field Grouping
Fields may be grouped together within a record using the <g> tag. This can be used to
convey linkage between sets of fields.

E.g. if a cat has two registration numbers together with the names of the registering
bodies, each pair of number/body fields should be grouped in order to tell the
importing program which body field is associated with which number field. E.g.:

<record>
...
 <g>
 <f fid='114'>876876</f>
 <f fid='191'>CFA</f>
 </g>
 <g>
 <f fid='114'>64654</f>
 <f fid='191'>GCCF</f>
 </g>
...

II Standard Tables and Fields
This section of the specification defines standard TABLEID's and the standard
FIELDID's within those tables.

Some fields are supported by all tables. These are the 'user defined fields' as present in
some products.

NOTE: The field ID numbering was changed when OPSVERSION was incremented
to 2. This was because the ranges used in version 1 left insufficient ranges of
unallocated ids for future expansion. Ranges are currently reserved as follows:
1-199: reserved for fields common to all tables
200-499: reserved for fields in the contact table
500-999: reserved for fields in the animal table

II.1 Fields Common to All Tables
Field Type Purpose Multi Required Notes

ID Field
Values
OK?

?

1
through
10

String User defined
string fields,
#1 through #10

Yes No

11
through
20

Date User defined
date fields, #1
through #10

Yes No

21
through
30

Bool User defined
boolean fields,
#1 through #10

Yes No

31
through
40

Currency User defined
currency fields,
#1 through #10

Yes No

41
through
50

Int User defined
integer fields,
#1 through #10

Yes No

101 String InputSource No No The source of this record – a general
purpose text field to indicate the
source of this record. E.g. ‘KC Stud
book, March 2001’ etc

102 Date InputDate No No A date associated with the
InputSource field

103 String UpdateSource No No As InputSource, but this is for a
record update.

104 Date UpdateDate No No A date associated with the
UpdateSource field

II.2 Animal Table
TABLEID='1'

There are a lot fields defined here, as this attempts to be the superset of all fields in the
programs of OPS members at the time of writing who have contributed their field lists.
Where different products have the same data, but it is stored in different ways, the field
definitions have been generalized as far as possible.

Field
ID

Type Purpose Multi
Field
Values
OK?

Require
d?

Notes

500 String Name No Yes The official name of the animal, excluding
any prefix or suffix titles.

501 String Pet name No No The 'call' or pet name.
502 Bool Sex No No Boolean false (0) means the female sex.

Boolean true (1) means the male sex.
If the sex of the animal is not known, the field
is not included within a record. (i.e it is
indeterminate).

503 Bool Sex Proven No No Whether or not the sex is proven. Useful with
birds.

504 String Sexing
Method

No No Useful with birds.

505 Bool Status No No Whether or not the animal is
neutered/spayed/altered (false, i.e. 0) or not
neutered/spayed/altered ('entire') (true, i.e. 1).

506 String Sire No No The name of the Sire of this animal.
If the sire is not known, the field is not
included within a record. (i.e. it is

indeterminate).

This name must not include any prefix or
suffix titles of the sire – i.e. it is the official
name of the sire. If there is a separate record
for the sire in the same OPSX file, it will be
identical to the value of the name field (id
500) in the sire record.

507 String Dam No No The name of the Dam of this animal.
If the dam is not known, the field is not
included within a record. (i.e. it is
indeterminate).

This name must not include any prefix or
suffix titles of the dam – i.e. it is the official
name of the dam. If there is a separate
record for the dam in the same OPSX file, it
will be identical to the value of the name field
(id 500) in the dam record.

508 String Mate No No The name of the usual mate for this animal.
(Relevant to birds).

This name must not include any prefix or
suffix titles of the mate – i.e. it is the official
name of the mate. If there is a separate
record for the mate in the same OPSX file, it
will be identical to the value of the name field
(id 500) in the mate record.

509 Date Date of birth No No It is allowed for the date in the month (DD) to
be zero. E.g.:

<f fid=’509’>20011000</f>
means 'born in October 2001'.

Likewise it is allowed for both DD and MM to
be zero. E.g

<f fid=’509’>20010000</f>
means 'born in 2001'

520 String Pre-title Yes No A pre-title for the animal. A 'pre-title' is one
that is normally displayed in front of the
animal's name.

e.g.
<f fid=’520’>Champion</f>

If a writer stores both ‘long’ and ‘short’ forms
of the pre-title for an animal, e.g. Champion
and CH, then both forms should be coded
with id 520, but the short form should also
have attribute short=’1’. E.g.:

<f fid=’520’>Champion</f>
<f fid=’520’ short=’1’>CH</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

Multiple titles may be given by repeating the
field multiple times.

522 String Post-title Yes No A string giving a post-title for the animal.
Operates just like field id 520 but for titles
that are normally placed AFTER the animal’s
name e.g. in pedigrees.

If a writer stores both ‘long’ and ‘short’ forms

of the after title for an animal, e.g.
Distinguished Merit and DM, then both forms
should be coded with id 522, but the short
form should also have attribute short=’1’.
E.g.:

<f fid=’522’>Distinguished
Merit</f>
<f fid=’522’ short=’1’>DM</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

524 String Pre-nontitle. Yes No This defines 'prefixes' that can come in front
of an animal's name but which are neither
pre-titles nor part of the animal’s official
name.

525 String Post-
nontitle.

Yes No This defines 'suffixes' that can come after an
animal's name but which are not actually
post-titles nor part of the animal’s official
name. E.g:

<f fid=’514’>US Import</f>

530 String Registration
Number

Yes No Registration number. Preferably should not
include the name of the registering body –
the body should go in field 531 if possible.

Fields 531-533 are defined for any associated
registering body name, date of registration,
and country of registration. When any of
these fields are present they should be
grouped with the 530 field.

E.g.
<g>
 <f fid=’530’>CS987987</f>
 <f fid=’531’>GCCF</f>
 <f fid=’532’>20020830</f>
 <f fid=’533’>UK</f>
</g>

Grouping is essential when an animal has
multiple registration numbers AND there are
531-533 fields present.

531 String Registering
Body

Yes No Name or abbreviation of the registering body
(registry) associated with the registration
number given by field id 530.

Normally only present when field id 530 is
also present, and typically will be grouped
with field 530 and, if present, 532/533. See
notes for field 530.

532 Date Registration
Date

Yes No Date of registration associated with the
registration number given by field id 530.

Normally only present when field id 530 is
also present, and typically will be grouped
with field 530 and, if present, 531/533. See
notes for field 530.

533 String Country of
Registration

Yes No Country of registration associated with the
registration number given by field id 530.

Normally only present when field id 530 is
also present, and typically will be grouped
with field 530 and, if present, 531/532. See
notes for field 530.

540 String Stud Book
Number

Yes No Stud Book number. Preferably should not
include the name of the publishing body – the
body should go in field 541 if possible.

Fields 541-542 are defined for any associated
publishing body name and date of
publication. When either of these fields are
present they should be grouped with the 540
field.

E.g.
<g>
 <f fid=’540’>SB02</f>
 <f fid=’541’>KC</f>
 <f fid=’542’>20020830</f>
</g>

Grouping is essential when an animal has
multiple stud book numbers AND there are
541-542 fields present.

541 String Stud Book
Publisher

Yes No Name or abbreviation of the publisher
associated with the stud book number given
by field id 540.

Normally only present when field id 540 is
also present, and typically will be grouped
with field 540 and, if present, 542. See notes
for field 540.

542 Date Stud Book
Publication
Date

Yes No Date of publication of the stud book number
given by field id 540.

Normally only present when field id 540 is
also present, and typically will be grouped
with field 540 and, if present, 541. See notes
for field 540.

543 String Litter Reg
No.

No No The litter registration number of the litter of
which this animal was part.

544 String Microchip
Number

Yes No

545 String Tattoo
Number

Yes No

546 String Cage No No Cage or hutch number.
560 Date Date of

Death
No No Comments from DOB apply here too.

561 String Cause of
Death

No No

562 String Weight No No
563 String Height No No Also known as 'Size' in some products.
564 String Length No No
565 String CERF

number
No No

566 String OFA number No No
567 String Hip Score No No This is a free format text field. No syntax is

defined for hip scores.
568 String Elbow Score No No This is a free format text field.
569 String Genetic

Defects
Yes No No format defined for this field. Multiple

defects may be given as multiline text
(separated by carriage return character
entities i.e ), or may be given as
multiple instances of the field.

570 String Temperame
nt

No No

571 String Blood type No No
572 String Eye test

result
No No Result of the most recent eye test.

573 Date Eye test
date

No No Date of most recent eye test.

574 String Health notes No No General purpose health memo field. Typically
multiline.

575
to
578

String Usual Vet No No The name of the usual vet of this animal.

Writers may encode this in split form, or
combined form, or both split and combined
forms. Reader must support import in either
split or combined form. See section I.12.D for
further details.

Field IDs:
575 – combined form name
576 – split form, title
577 – split form, forename(s)
578 – split form, surname

600 String Country of
Import

No No

601 Date Date of
Import

No No

602 String Import
Number

No No

603 String Country of
Export

No No

604 Date Date of
Export

No No

605 String Export
Number

No No

606
to
609

String Sold To No No Name of person this animal was sold to.

Writers may encode this in split form, or
combined form, or both split and combined
forms. Reader must support import in either
split or combined form. See section I.12.D for
further details.

Field IDs:
606 – combined form name
607 – split form, title
608 – split form, forename(s)
609 – split form, surname

610 Date Sold On No No Date on which animal was sold
611 currenc

y
Sold For No No Amount animal was sold for.

612
to
615

String Bought
From

No No Name of person from whom this animal was
bought.

Writers may encode this in split form, or
combined form, or both split and combined
forms. Reader must support import in either
split or combined form. See section I.12.D for
further details.

Field IDs:
612 – combined form name
613 – split form, title
614 – split form, forename(s)
615 – split form, surname

616 Date Bought On No No Date animal was bought
617 currenc

y
Bought For No No Amount animal was bought for

630
to

String Breeder Yes No The name of the breeder.

633 Writers may encode this in split form, or
combined form, or both split and combined
forms. Reader must support import in either
split or combined form. See section I.12.D for
further details.

When multiple breeders are present AND
split form fields are used, grouping must also
be used on each tuple of fields 631-633.

Field IDs:
630 – combined form name
631 – split form, title
632 – split form, forename(s)
633 – split form, surname

634
to
637

String Owner Yes No The name of the owner.

Writers may encode this in split form, or
combined form, or both split and combined
forms. Reader must support import in either
split or combined form. See section I.12.D for
further details.

When multiple owners are present AND split
form fields are used, grouping must also be
used on each tuple of fields 635-637.

Field IDs:
634 – combined form name
635 – split form, title
636 – split form, forename(s)
637 – split form, surname

638
to
641

String Surveyor No No Name of the surveyor.

Writers may encode this in split form, or
combined form, or both split and combined
forms. Reader must support import in either
split or combined form. See section I.12.D for
further details.

Field IDs:
638 – combined form name
639 – split form, title
640 – split form, forename(s)
641 – split form, surname

700 String Coat Colour No No Coat colour. That part of the full breed
description that truly relates to coat colour.
E.g. with a Chocolate Tabby Point Siamese,
the coat colour would be 'Chocolate'.

If a writer stores both ‘long’ and ‘short’ forms
of the coat colour for an animal, both forms
should be coded with id 700, but the short
form should also have attribute short=’1’.
E.g.:

<f fid=’700’>Chocolate</f>
<f fid=’700’ short=’1’>Choc</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

A reader that does not support both short and
long forms of the field should simply ignore
the ‘short’ attribute.

702 String Coat Pattern No No Coat pattern. That part of the full breed
description that truly relates to coat pattern.
E.g. with a Chocolate Tabby Point Siamese,
the coat pattern would be ' Tabby Point' or
perhaps just ‘Tabby’.

If a writer stores both ‘long’ and ‘short’ forms
of the coat pattern for an animal, both forms
should be coded with id 702, but the short
form should also have attribute short=’1’.
E.g.:

<f fid=’702’>Tabby</f>
<f fid=’702’ short=’1’>Tby</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

A reader that does not support both short and
long forms of the field should simply ignore
the ‘short’ attribute.

704 String Eye Colour No No Eye colour.

If a writer stores both ‘long’ and ‘short’ forms
of the eye colour for an animal, both forms
should be coded with id 704, but the short
form should also have attribute short=’1’.
E.g.:

<f fid=’704’>Odd Eyed</f>
<f fid=’704’ short=’1’>Odd</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

A reader that does not support both short and
long forms of the field should simply ignore
the ‘short’ attribute.

706 String Variety No No Variety. Equivalent to the full breed
description, less the breed. E.g. with a
Chocolate Tabby Point Siamese, the variety
would be ' Chocolate Tabby Point '.

If a writer stores both ‘long’ and ‘short’ forms
of the variety for an animal, both forms
should be coded with id 706, but the short
form should also have attribute short=’1’.
E.g.:

<f fid=’706’>Chocolate Tabby
Point</f>
<f fid=’706’ short=’1’>Choc Tby
Pt</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

A reader that does not support both short and
long forms of the field should simply ignore
the ‘short’ attribute.

708 String Breed No No This is the overall breed of the animal.

E.g. with a Chocolate Tabby Point Siamese,
the breed would be 'Siamese'.

If a writer stores both ‘long’ and ‘short’ forms
of the overall breed for an animal, both forms
should be coded with id 708, but the short
form should also have attribute short=’1’.
E.g.:

<f fid=’708’>Siamese</f>
<f fid=’708’ short=’1’>SIA</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

A reader that does not support both short and
long forms of the field should simply ignore
the ‘short’ attribute.

710 String Full Breed No No This is the complete description of the type of
animal. E.g. with a Chocolate Tabby Point
Siamese, this is literally 'Chocolate Tabby
Point Siamese'.

If a writer stores both ‘long’ and ‘short’ forms
of the full type for an animal, both forms
should be coded with id 710, but the short
form should also have attribute short=’1’.
E.g.:

<f fid=’710’>Chocolate Tabby
Point Siamese</f>
<f fid=’710’ short=’1’>Choc Tby
Pt SIA</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

A reader that does not support both short and
long forms of the field should simply ignore
the ‘short’ attribute.

712 String Group No No This is the breed group. E.g with dogs, this
might be 'Toy', 'Utility' etc. E.g. with cats, this
might be 'Oriental', 'Shorthair' etc.

If a writer stores both ‘long’ and ‘short’ forms
of the breed group for an animal, both forms
should be coded with id 712, but the short
form should also have attribute short=’1’.
E.g.:

<f fid=’712’>Pastoral</f>
<f fid=’712’ short=’1’>Past</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

A reader that does not support both short and
long forms of the field should simply ignore
the ‘short’ attribute.

714 String Ear Type No No Ear type e.g. Folded, Lop Eared etc.

If a writer stores both ‘long’ and ‘short’ forms
of the ear type for an animal, both forms
should be coded with id 714, but the short
form should also have attribute short=’1’.
E.g.:

<f fid=’714’>Lop Eared</f>
<f fid=’714’ short=’1’>Log</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

A reader that does not support both short and
long forms of the field should simply ignore
the ‘short’ attribute.

716 String Tail Type No No Tail type e.g. Manx, Stumpie etc

If a writer stores both ‘long’ and ‘short’ forms
of the tail type for an animal, both forms
should be coded with id 716, but the short
form should also have attribute short=’1’.
E.g.:

<f fid=’716’>Rumpy Riser</f>
<f fid=’716’ short=’1’>RR</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

A reader that does not support both short and
long forms of the field should simply ignore
the ‘short’ attribute.

718 String Fur Type No No Fur type e.g. ‘Long haired.

If a writer stores both ‘long’ and ‘short’ forms
of the fur type for an animal, both forms
should be coded with id 718, but the short
form should also have attribute short=’1’.
E.g.:

<f fid=’718’>Long Haired</f>
<f fid=’718’ short=’1’>LH</f>

If a writer stores only one form of the field, as
will be true for most writers, it should be
coded without the ‘short’ attribute.

A reader that does not support both short and
long forms of the field should simply ignore
the ‘short’ attribute.

720 String Genus No No
721 String Species No No
722 String Sub Species No No
723 String Breed

Number/Cod
e

Yes No Breed number or code. A number or code
that identifies the breed/type. Typically
different registries use different coding
schemes.

E.g. with cats there are GCC breed numbers,
CFA breed numbers (different to GCCF
numbers), EMS codes (as used by FIFe

breeders), etc.

Writers should use the 723 field for the
number/code itself. Optionally, the name of
the associated registry may be given in a 724
field.

Multiple breed numbers/codes are allowed.
When multiple numbers/codes are present
AND there are 724 fields present, grouping
should be used to avoid ambiguity.

E.g. a Chocolate Burmese cat could be
assigned GCCF breed number ‘27b’, EMS
code ‘BUR b’. or CFA breed number ‘1402’. A
writer that emitted all three forms could do it
like this:

<g>
 <f fid=’723’>27b</f>
 <f fid=’724’>GCCF</f>
</g>
<g>
 <f fid=’723’>BUR b</f>
 <f fid=’724’>FIFE</f>
</g>
<g>
 <f fid=’723’>1402</f>
 <f fid=’724’>CFA</f>
</g>

724 String Breed
Number/Cod
e Issuing
Body

Yes No See field 723.

725 String Faults No No i.e faults when compared to the breed
standard

726 String TICA
Category

No No Cat specific: this is the TICA category

727 String TICA
Division

No No Cat specific: this is the TICA division

728 Bool Non-
Standard
Breed?

No No Is this a non-standard breed?

750 String Genotype No No
751 String Coat Pattern

Genotype
No No

752 String Coat Colour
Genotype

No No

753 String Eye Colour
Genotype

No No

754 String Defect
Genotype

No No

800 String Gestation
Period

No No A number of days.

801 String Points No No
802 String

OR
image/j
peg OR
image/b
mp OR
image/g
if OR
applicati
on/x-
msmeta

Picture Yes No A picture(image). This can either be given as
a filename, in which case the field is of type
'string'.

OR
It can be given as the image data itself, in
which case the field type is one of the
supported image formats, and the ‘type’
attribute must be given.

file OR
applicati
on/x-
msenha
ncedme
tafile

803 String Memo No No Free format text field. Generally multi-line.
804 String Comments No No Another free format text field. Generally

multi-line.
805 String Legs No No Relevant to rabbits, cavies etc. This is the

#legs won at shows
806 String GC number No No Relevant to rabbits etc. This is a number

assigned to the animal upon reaching Grand
Champion status.

807 String Win Yes No Again relevant to rabbits etc. A ‘win’ is simply
a bit of text describing a show win. There
may be multiple ‘wins’.

II.3 Contact Table
TABLEID='2'

Field
ID

Type Purpose Multiple
Field
Values
Allowed
?

Required? Notes

201
to
204

String Name No Yes Name of the person.

Writers may encode this in split form,
or combined form, or both split and
combined forms. Reader must support
import in either split or combined form.
See section I.12.A and I.12.C for
further details.

Field IDs:
201 – combined form name
202 – split form, title
203 – split form, forename(s)
204 – split form, surname

205
to
212

String Address No No The postal address.

Writers may encode this in split form,
or combined form, or both split and
combined forms. Reader must support
import in either split or combined form.
See section I.12.B and I.12.C for
further details.

Field IDs:
205 – combined form address
206 – split form, Street1
207 – split form, Street2
208 – split form, Street3
209 – split form, City
210 – split form, State/Region
211 – split form, Country
212 – split form, Postcode/Zip code

213 String Home Phone Yes No
214 String Work Phone Yes No

215 String Cell (Mobile)
Phone

Yes No

216 String Fax number Yes No
217 String Email address Yes No
218 String URL (website) Yes No
219 Date Date of Birth No No
220 String Club Yes No Name of club this contact is a member

of. Multiple clubs allowed by repeating
the field.

221 String Kennel number Yes No Kennel/cattery number (if assigned by
governing body).

222 String Kennel name Yes No Names of kennels (dogs),
prefixes/catteries (cats), etc that this
contact is associated with.

Multiple names allowed, by repeating
the field.

223 String Judge of Yes No Name of a breed this person is a
recognized judge of.

224 String Show Manager
for

Yes No Name of show this person is usually a
show manager of.

Multiple names allowed, by repeating
the field.

225 String Notes No No Free format notes field.

II.4 Other Tables
To be defined.

